HARD NEGATIVE MINING
STRATEGIES FOR RETRIEVAL
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EMBEDDING MODELS
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tasks:
e Information retrieval
e guestion answering
e semantic textual similarity
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NEGATIVES AND CONTRASTIVE LEARNING
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Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
ditterent identity.
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Anchor: query

Positive: answer

Negative: chunks that are irrelevant to
a query or insufficient to answer it



INFONCE LOSS FUNCTION
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HARD NEGATIVES
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RANDOM SAMPLING
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IN-BATCH NEGATIVE
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BEST MATCH 25: BM25

TF-IDF
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NV-Retriever: Improving text embedding models with effective hard-negative mining

TOP-K RETRIEVAL
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e TopK-Abs thresholds negative scores with
respect only to the query, regardless the
positive passage relevance.
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NV-Retriever: Improving text embedding models with effective hard-negative mining

POSITIVE AWARE HARD NEGATIVE MINING
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Figure 1: Histograms comparing Naive Top-k and TopK-PercPos mining methods
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Top-k Margin Positive Threshold Top-k Percentage Positive Threshold
e 0.05in NV-Retriever e 95% of positive score

e max.neg.threshold = pos.score - absolute.margin e max.neg.threshold = pos.score * percentage.margin



Text Embeddings by Weakly-Supervised Contrastive Pre-training (E5)

MINED HARD NEGATIVES + DISTILLATION FROM CROSS ENCODER
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Figure 2: Illustration of our supervised fine-tuning pipeline. Note that we only use SimLLM to initialize the
biencoder-based retrievers. For cross-encoder based re-ranker, we use off-the-shelf pre-trained models such as
ELECTRAbasﬂ.

BM25 negatives + In-batch negatives => retriever 1 => mined-negatives-1 => retriever 2
=> mined-negatives-2 => Re-ranker => re-ranked negatives-2 => Distilled Retriever



Multilingual E5 Text Embeddings: A Technical Report : multilingual-e5-large-instruct

SYNTHETIC HARD NEGATIVE MINING + IN-BATCH

@aue been assigned a retrieval taskj{task}

Your mission is to write one text retrieval example for this task in JSON format. The JSON object must
contain the following keys:

- "user_query": a string, a random user search query specified by the retrieval task.

- "positive_document": a string, a relevant document for the user query.

- "hard_negative_document": a string, a hard negative document that only appears relevant to the query.

Please adhere to the following guidelines:
- The "user_query" should bei{quary_type}, {query_length}, {c!arity},land diverse in topic.

- Alldocuments should be at leastj{num_words} vords long.
- Both the query and documents should be inf{language}. |
... (omitted some for space)

Qmutput must always be a JSON object only, do not explain yourself or output anything else. Be crew

{"user_query": "How to use Microsoft Power Bl for data analysis”, -
"positive_document”: "Microsoft Power Bl is a sophisticated tool that requires time and practice to
master. In this tutorial, we'll show you how to navigate Power Bl ... (omitted) ",
“hard_negative_document”: “Excel is an incredibly powerful tool for managing and analyzing large
amounts of data. Our tutorial series focuses on how you...(omitted)” }
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APPROXIMATE NEAREST NEIGHBOR NEGATIVE CONTRASTIVE LEARNING FOR DENSE TEXT RETRIEVAL

ONLINE HARD NEGATIVE MINING: ANCE
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| Figure 2: Dynamic Hard Negative Mining vs.
| [ Standard Hard Negative Mining: Score-Steps
ﬂsﬁwa (D, (o, _ (o5 | (o, |[ o5 | Curves. Hard negatives are checked every
100 steps. When the score multiplied by 1.15
o EEE d* d* O a* a* . i ETE
Ll [ Ld* ) L) J is less than the initial score and the absolute
Trai |I] La J[a ] Le JLa | value of the score is less than 0.8, we consider
rainer Checkpoint k1 Checkpoint k pres———_— the negative example no longer difficult and

replace it with a new hard negative.
Figure 2: ANCE Asynchronous Training. The Trainer learns the representation using negatives from

the ANN index. The Inferencer uses a recent checkpoint to update the representation of documents in Conan-embedding: General Text Embedding with More and Better Negative Samples
the corpus and once finished, refreshes the ANN index with most up-to-date encodings.



FEEL FREE TO APPROACH US IF
YOU HAVE ANY QUESTIONS.

Thank you for listening!



